Python 全栈之路系列之面向对象运算符重载
运算符重载的概念如下:
- 运算符重载让类拦截常规的 Python 运算;
- 类可重载所有 Python 表达式运算符;
- 类也可重载打印、函数调用、属性点号运算等内置运算;
- 重载是类实例的行为想内置类型;
- 重载是通过提供特殊名称的类方法来实现的;
# 常见的运算符重载方法
方法 | 重载 | 调用 |
---|---|---|
__init__ | 构造函数 | 对象建立:X = Class(args) |
__del__ | 解析函数 | X 对象收回 |
__add__ | 运算符+ | 如果没有__iadd__ ,X+Y,X+=Y |
__or__ | 运算符或 | 如果没有__ior__ |
__repr__ ,__str__ | 打印、转换 | print(X)、repr(X)、str(X) |
__call__ | 函数调用 | X(*args, **kwargs) |
__getattr__ | 点号运算 | X.undefined |
__setattr__ | 属性赋值语句 | X.any = value |
__delattr__ | 属性删除 | del X.any |
__getattribute__ | 属性获取 | X.any |
__getitem__ | 索引运算 | X[key],X[i:j],没__iter__ 时的 for 循环和其他迭代器 |
__setitem__ | 索引赋值语句 | X[key]=value,X[i:k]=sequence |
__delitem__ | 索引和分片删除 | del X[key], del X[i:j] |
__len__ | 长度 | len(X),如果没有__bool__ ,真值测试 |
__bool__ | 布尔测试 | bool(X),真测试 |
__lt__ ,__gt__ ,__le__ ,__ge__ ,__eq__ ,__ne__ | 特定的比较 | X<Y,X>Y... |
__radd__ | 右侧加法 | Other + X |
__iadd__ | 增强的加法 | X += Y |
__iter__ ,__next__ | 迭代环境 | I=iter(X),next(I) |
__contains__ | 成员关系测试 | item in X(任何可迭代对象) |
__index__ | 整数值 | hex(X),bin(X),oct(X),o[X],O[X:] |
__enter__ ,__exit__ | 环境管理器 | with obj as var: |
__get__ ,__set__ ,__delete__ | 描述符属性 | X.attr,X.attr=Value,del X.attr |
__new__ | 创建 | 在__init__ 之前创建对象 |
所有重载方法的名称前后都有两个下划线字符,以便把同类中定义的变量名区别开来。
# 构造函数和表达式:__init__
和__sub__
>>> class Number:
... def __init__(self, start):
... self.data = start
... def __sub__(self, other):
... return Number(self.data - other)
...
>>> X = Number(5)
>>> Y = X - 2
>>> Y
<__main__.Number object at 0x10224d550>
>>> Y.data
3
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10
11
12
# 索引和分片: __getitem__
和__setitem__
基本索引
>>> class Index:
... def __getitem__(self, item):
... return item ** 2
...
>>>
>>> for i in range(5):
... I = Index()
... print(I[i], end=' ')
...
0 1 4 9 16
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
切片索引
>>> class Index:
... data = [5, 6, 7, 8, 9]
... def __getitem__(self, item):
... print('getitem: ', item)
... return self.data[item]
... def __setitem__(self, key, value):
... self.data[key] = value
...
>>> X = Index()
>>> print(X[1:4])
getitem: slice(1, 4, None)
[6, 7, 8]
>>> X[1:4] = (1, 1, 1)
>>> print(X[1:4])
getitem: slice(1, 4, None)
[1, 1, 1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 索引迭代:__getitem__
如果重载了这个方法,for 循环每次循环时都会调用类的__getitem__方法;
>>> class stepper:
... def __getitem__(self, item):
... return self.data[item].upper()
...
>>>
>>> X = stepper()
>>> X.data = 'ansheng'
>>> for item in X:
... print(item)
...
A
N
S
H
E
N
G
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 迭代器对象:__iter__
和__next__
>>> class Squares:
... def __init__(self, start, stop):
... self.value = start - 1
... self.stop = stop
... def __iter__(self):
... return self
... def __next__(self):
... if self.value == self.stop:
... raise StopIteration
... self.value += 1
... return self.value ** 2
...
>>> for i in Squares(1, 5):
... print(i)
...
1
4
9
16
25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 成员关系:__contains__
、__iter__
和__getitem__
class Iters:
def __init__(self, value):
self.data = value
def __getitem__(self, item):
print('get[%s]' % item, end='')
return self.data[item]
def __iter__(self):
print('iter>==', end='')
self.ix = 0
return self
def __next__(self):
print('next:', end='')
if self.ix == len(self.data): raise StopIteration
item = self.data[self.ix]
self.ix += 1
return item
def __contains__(self, item):
print('contains: ', end=' ')
return item in self.data
X = Iters([1, 2, 3, 4, 5])
print(3 in X)
for i in X:
print(i, end='|')
print([i ** 2 for i in X])
print(list(map(bin, X)))
I = iter(X)
while True:
try:
print(next(I), end=' @')
except StopIteration as e:
break
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# 属性引用:__getattr__
和__setattr__
当通过未定义的属性名称和实例通过点号进行访问时,就会用属性名称作为字符串调用这个方法,但如果类使用了继承,并且在超类中可以找到这个属性,那么就不会触发。
>>> class empty:
... def __getattr__(self, item):
... if item == 'age':
... return 40
... else:
... raise AttributeError(item)
...
>>>
>>> x = empty()
>>> print(x.age)
40
>>> print(x.name)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 6, in __getattr__
AttributeError: name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> class accesscontrol:
... def __setattr__(self, key, value):
... if key == 'age':
... self.__dict__[key] = value
... else:
... raise AttributeError(key + ' not allowed')
...
>>>
>>> x = accesscontrol()
>>> x.age = 40
>>> print(x.age)
40
>>> x.name = 'Hello'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 6, in __setattr__
AttributeError: name not allowed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# __repr__
和__str__
会返回字符串表达式
__repr__
和__str__
都是为了更友好的显示,具体来说,如果在终端下 print(Class)则会调用__repr__
,非终端下会调用__str__
方法,且这两个方法只能返回字符串;
class adder:
def __init__(self, value=0):
self.data = value
def __add__(self, other):
self.data += other
def __repr__(self):
return 'addrepr(%s)' % self.data
def __str__(self):
return 'N: %s' % self.data
x = adder(2)
x + 1
print(x)
print((str(x), repr(x)))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 右侧加法和原处加法: __radd__
和__iadd__
只有当+右侧的对象是类实例,而左边对象不是类实例的时候,Python 才会调用__radd__
class Commuter:
def __init__(self, val):
self.val = val
def __add__(self, other):
print('add', self.val, other)
return self.val + other
def __radd__(self, other):
print('radd', self.val, other)
return other + self.val
x = Commuter(88)
y = Commuter(99)
print(x + 1)
print('')
print(1 + y)
print('')
print(x + y)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
使用__iadd__
进行原处加法
class Number:
def __init__(self, val):
self.val = val
def __iadd__(self, other):
self.val += other
return self
x = Number(5)
x += 1
x += 1
print(x.val)
class Number:
def __init__(self, val):
self.val = val
def __add__(self, other):
return Number(self.val + other)
x = Number(5)
x += 1
x += 1
print(x.val)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Call 表达式:__call__
当调用类实例时执行__call__
方法
class Callee:
def __call__(self, *args, **kwargs):
print('Callee:', args, kwargs)
C = Callee()
C(1, 2, 3)
C(1, 2, 3, x=1, y=2, z=3)
class Prod:
def __init__(self, value):
self.value = value
def __call__(self, other):
return self.value * other
x = Prod(3)
print(x(3))
print(x(4))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 比较:__lt__
,__gt__
和其他方法
类可以定义方法来捕获所有的 6 种比较运算符:<、>、<=、>=、==和!=
class C:
data = 'spam'
def __gt__(self, other):
return self.data > other
def __lt__(self, other):
return self.data < other
x = C()
print(x > 'han')
print(x < 'han')
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10
11
12
# 布尔值测试:bool__和__len
class Truth:
def __bool__(self):
return True
X = Truth()
if X: print('yes')
class Truth:
def __bool__(self):
return False
X = Truth()
print(bool(X))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2
3
4
5
6
7
8
9
10
11
12
13
14
15
如果没有这个方法,Python 退而求其次的求长度,因为一个非空对象看作是真:
>>> class Truth:
... def __len__(self): return 0
...
>>> X = Truth()
>>> if not X: print('no')
...
no
1
2
3
4
5
6
7
2
3
4
5
6
7
如果两个方法都有,__bool__
会胜过__len__
:
>>> class Truth:
... def __bool__(self): return True
... def __len__(self): return 0
...
>>> X = Truth()
>>> bool(X)
True
1
2
3
4
5
6
7
2
3
4
5
6
7
如果两个方法都没有定义,对象毫无疑义的看作为真:
>>> class Truth: pass
...
>>> bool(Truth)
True
1
2
3
4
2
3
4
# 对象解析函数:__del__
每当实例产生时,就会调用__init__构造函数,每当实例空间被收回时,它的对立面__del__
,也就是解析函数,就会自动执行;
class Life:
def __init__(self, name='unknown'):
print('Hello, ', name)
self.name = name
def __del__(self):
print('Goodbye', self.name)
brian = Life('Brian')
brian = 'loretta'
1
2
3
4
5
6
7
8
9
10
11
2
3
4
5
6
7
8
9
10
11
编辑 (opens new window)
上次更新: 2024-07-15, 03:27:09